递归,搜索与回溯

news/2024/7/20 22:20:17 标签: 深度优先, 算法

1.汉诺塔问题

在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。

//确定子问题处理方式是相同的
//确定递归函数的函数头传参
//确定函数体也就子问题的处理方式
//判断函数出口

class Solution {
public:
    void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {
        int n=A.size();
        dfs(A,B,C,n);
    }

    void dfs(vector<int>& A,vector<int>&B ,vector<int>& C,int n){
        if(n==1){
        C.push_back(A.back());//这里一定是要A.back(),可以画一下递归展开图
        A.pop_back();
        return;
        }//函数出口

        dfs(A,C,B,n-1);//不关心如何递归下去的,认为该函数一定能够帮我做到把a上的n-1数据借助c挪动b上

        C.push_back(A.back());//这里一定是要A.back(),可以画一下递归展开图
        A.pop_back();

        dfs(B,A,C,n-1);//同样认为该函数一定能把b上残留的n-1个数据借助a放到c上面
    }
};

2.合并升序链表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
        ListNode* newHead=merge(list1,list2);
        return newHead;
    }

    ListNode* merge(ListNode* l1,ListNode* l2){
        if(l1==nullptr) return l2;
        if(l2==nullptr) return l1;


        if(l1->val<l2->val){
            l1->next=merge(l1->next,l2);
            return l1;//返回拼好的头节点
        }

        else{
            l2->next=merge(l2->next,l1);
            return l2;
        }

    }
};

3. 反转链表

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        if(head==nullptr||head->next==nullptr)return head;
        ListNode* newhead=reverseList(head->next);//认为一定可以返回一个已经逆序的子链表
        head->next->next=head;//让已经逆序的子序列的头节点指向子序列的上一个头节点
        head->next=nullptr;
        return newhead;//这里newhead一直是没有移动过的,一直都是新的链表的头结点。
    }
};

4. 两两交换链表中的节点

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if(head==nullptr||head->next==nullptr)
        {
            return head;
        }

        ListNode* new_head=head->next;
        ListNode* tmp=head->next->next;//小心中途修改的问题
        head->next->next=head;
        head->next=swapPairs(tmp);
        return new_head;
    }
};

5. Pow(x,n)

  • -100.0 < x < 100.0
  • -2^31 <= n <= 2^31-1
  • -10^4 <= x^n <= 10^4

本题需要注意负数的情况和超int取值范围的情况

这样会语法报错。。。

class Solution {
public:
    double myPow(double x, int n) 
    {
        return n > 0 ?pow(x,n) : 1.0/pow(x,-(long long)n );
    }

    double pow(double x,long long n)
    {
        if(n==0) return 1.0;

        double ret=pow(x,n/2);

        if(n%2==0){return ret*ret;}
        else{return ret*ret*x;}
    }
};

6. 布尔逻辑二叉树

class Solution {
public:
    bool evaluateTree(TreeNode* root) {
        if(root->left==nullptr)
        {
            if(root->val==1)return true; 
            else return false;
        }

        bool left=evaluateTree(root->left);
        bool right=evaluateTree(root->right);
        if(root->val==2)
        {
            return left || right;
        }
        else 
        {
            return left && right;
        }

    }
};

7.根到叶子之和 

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。

每条从根节点到叶节点的路径都代表一个数字:

  • 例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123 。

计算从根节点到叶节点生成的 所有数字之和 。

叶节点 是指没有子节点的节点。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */

//函数头设计,我们认为传入一个节点,那么就会算出此节点到所有节点的数字之和
//函数体:从上一层获得此前的所有数字组合再拼上此层,所以需要多设计一个参数来记录
//函数出口:当没有孩子的时候
class Solution {
public:
    int sumNumbers(TreeNode* root) {
        return dfs(root,0);
    }

    int dfs(TreeNode* root,int presum)
    {
        // if(root==nullptr)
        // {
        //     return presum;题目给的一定是有一个节点
        // }

        presum=presum*10+root->val;
        std::cout<<presum<<std::endl;
        int ret=0;//因为函数的功能是用来计算之和并返回,所以不能直接presum传入,此处presum只是用于记录已经遍历了的数字。

        if(root->left==nullptr&&root->right==nullptr){
            return presum;
        }

        if(root->left) ret+=dfs(root->left,presum);
        if(root->right) ret+= dfs(root->right,presum);

        return ret;
    }
};

8.二叉树剪枝

给定一个二叉树 根节点 root ,树的每个节点的值要么是 0,要么是 1。请剪除该二叉树中所有节点的值为 0 的子树。

节点 node 的子树为 node 本身,以及所有 node 的后代。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
//函数体设计
//返回一个已经剪枝的根节点

//函数出口:当自己是空的时候返回空,处理动作一致

class Solution {
public:
    TreeNode* pruneTree(TreeNode* root) {
        // if(root==nullptr)
        // {
        //     return nullptr;
        // }

        if(root->left) root->left=pruneTree(root->left);
        if(root->right) root->right=pruneTree(root->right);

        if(root->left==nullptr&&root->right==nullptr&&root->val==0)
        //走到头才算是树枝当树枝被剪完了自己也就是树枝的。
        {
            //delete root;
            root=nullptr;
            // return nullptr;
        }

        return root;
    }
};

9.验证二叉搜索树(注意剪枝

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
long long prev_val=LONG_MIN;

    bool isValidBST(TreeNode* root) {
        if(root==nullptr)
        {
            return true;
        }
        bool left=isValidBST(root->left);

        if(left==false) return false;//剪枝
        
        bool cur=false;
        if(root->val>prev_val)
        {
            prev_val=root->val;
            cur=true;
        }

        if(right==false) return false;//剪枝

        bool right=isValidBST(root->right);
        //cout<< root->val;



        return left&&right&&cur;
    }
};

10. 二叉搜索树第k小的元素(二叉搜索树中序遍历是一个有序序列)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int count;
    int ret;

    int kthSmallest(TreeNode* root, int k) {
        count=k;
        return dfs(root);
    }

    int dfs(TreeNode* root)
    {
        if(root==nullptr){
            return ret;
        }
        ret=dfs(root->left);
        if(count==0)
        {
            return ret;
        }
        ret=root->val;
        count--;
        ret=dfs(root->right);

        return ret;
    }
};

11. 二叉树的所有路径

12. 全排列

1.此处path设置为全局变量更好,虽然回溯时需要修改,但是节省一些空间并且效率更高。:

class Solution {
public:

    vector<vector<int>> ret;
    vector<bool> check;//用于记录哪些数字使用过了而达到剪枝的效果,回溯的时候需要把使用过的数字还回去
    vector<int> path;//这里的path最好使用全局变量
    vector<vector<int>> permute(vector<int>& nums) {
        check.resize(nums.size());
        dfs(nums,path);
        return ret;
    }

    void dfs(vector<int>& nums,vector<int> path)
    {
        if(nums.size()==path.size())
        {
            ret.push_back(path);
            return ;
        }

        for(int i=0;i<nums.size();i++)
        {


            if(check[i]==true)
            {
                continue;
            }
            check[i]=true;
            vector<int> tmp=path;
            tmp.push_back(nums[i]);
            dfs(nums,tmp);

            check[i]=false;
        }
    }
};

2. 修改后:

class Solution {
public:

    vector<vector<int>> ret;
    vector<bool> check;//用于记录哪些数字使用过了而达到剪枝的效果,回溯的时候需要把使用过的数字还回去
    vector<int> path;//这里的path最好使用全局变量
    vector<vector<int>> permute(vector<int>& nums) {
        check.resize(nums.size());
        dfs(nums,path);
        return ret;
    }

    void dfs(vector<int>& nums,vector<int>& path)
    {
        if(nums.size()==path.size())
        {
            ret.push_back(path);
            return ;
        }

        for(int i=0;i<nums.size();i++)
        {


            if(check[i]==true)
            {
                continue;
            }
            check[i]=true;
            // vector<int> tmp=path;
            // tmp.push_back(nums[i]);
            path.push_back(nums[i]);
            dfs(nums,path);

            check[i]=false;//向下递归完后恢复现场
            path.pop_back();
        }
    }
};

13. 二叉树的所有路径

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。

叶子节点 是指没有子节点的节点。

13. 二叉树的所有路径

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。

叶子节点 是指没有子节点的节点。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<string> ret;
    string path;
    int i=0;
    vector<string> binaryTreePaths(TreeNode* root) 
    {
        if(root==nullptr) return ret;//假设会传入空,最好不要写在dfs函数里面
        dfs(root,path);
        return ret;
    }

    void dfs(TreeNode* root,string path)
    {
        path+=to_string(root->val);
        if(root->left==nullptr&&root->right==nullptr)
        {
            ret.push_back(path);
            return;
        }
        path+="->";
        if(root->left) dfs(root->left,path);
        if(root->right) dfs(root->right,path);//剪枝,并且达到了不会传入空的效果

    }
};


http://www.niftyadmin.cn/n/5044813.html

相关文章

31.带有文本和渐变阴影的CSS图标悬停效果

效果 源码 index.html <!doctype html> <html> <head><meta charset="utf-8"><title>CSS Icon Hover Effects</title><link rel="stylesheet" href="style.css"> </head> <body><ul…

原生JS手写animate函数

1 animate动画需求说明 1.1 animate函数&#xff0c;参数设定 params {dom} 要运动的元素 params {attr} 要运动的属性 params {target} 运动的目标位置 params {callback} 运动完成后的回调函数&#xff0c;可选 1.2 功能说明 支持任意带px单位的属性运动&#xff0c;如 left…

SpringBoot启动失败报错,spring.profiles.active:@env@中环境变量@无法识别报错_active: @env@

SpringBoot打包启动时无法识别到配置中的spring.profiles.activeenv环境变量 报错内容如下&#xff1a; Caused by: org.yaml.snakeyaml.scanner.ScannerException: while scanning for the next token found character that cannot start any token. (Do not use for inden…

【2023最新详细图文教程】安装数模建模软件Matlab教程

&#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号&#xff1a;程序员洲洲。 &#x1f388; 本文专栏&#xff1a;本文…

图像处理与计算机视觉--第三章-颜色与纹理分析-6问

图像处理与计算机视觉--第三章-颜色与纹理分析-6问 1.哪些因素决定物体颜色的感知? 对于物体颜色的感知&#xff0c;主要取决于以下三个因素: 1.照射到物体表面光波长的分布 2.物体表面如何反射照射光 3.传感器或者视觉细胞的敏感性 除了上述的三个因素之外&#xff0c…

红黑树Java实现

文章目录 红黑树1. 概念性质2. 红黑树节点定义3. 红黑树的插入情况1情况2情况3其它细节问题插入代码实现 4. 红黑树的验证5.性能分析 红黑树 1. 概念性质 红黑树也是一种二插搜索树&#xff0c;每一个节点上比普通二插搜索树都增加了一个存储位置表示节点的颜色&#xff0c;可…

计算机二级python简单应用题刷题笔记(二)

1、利用random库和turtle库&#xff0c;在屏幕上绘制5个圆圈&#xff0c;圆圈的半径和圆心的坐标由randint()函数产生&#xff0c;圆心的X和Y坐标范围在【-100&#xff0c;100】之间&#xff0c;半径的范围在【20&#xff0c;50】之间&#xff0c;圆圈的颜色随机在color列表里选…

【phpMyadmin】MYSQL突破secure_file_priv写shell提权

前言 phpMyAdmin 是一个以PHP为基础&#xff0c;以Web-Base方式架构在网站主机上的MySQL的数据库管理工具&#xff0c;让管理者可用Web接口管理MySQL数据库。借由此Web接口可以成为一个简易方式输入繁杂SQL语法的较佳途径&#xff0c;尤其要处理大量资料的汇入及汇出更为方便。…